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We present a novel method to better investigate adverse drug reactions in chemical space. By integrating
data sources about adverse drug reactions of drugs with an established cheminformatics modeling method,
we generate a data set that is then visualized with a systems biology tool. Thereby new insights into undesired
drug effects are gained. In this work, we present a global analysis linking chemical features to adverse drug
reactions.

Introduction

Knowledge of both desired “on-target” and undesired “off
target” biological activities of a potential drug is crucial in order
to ensure efficacy as well as a good safety profile. Undesired
effects, so-called adverse drug reactions (ADRsa), have gained
broad public attention recently even in the mainstream media.
As a consequence, over the last 10 years, 19 broadly used
marketed drugs were withdrawn after exhibiting unexpected
severe side effects, with Merck’s Rofecoxib and Bayer’s
Cerivastatin being two of the most prominent cases.1,2 Thus, it
is not surprising that in addition to death and loss of quality of
life for patients, ADRs are also of big economical concern for
pharmaceutical companies.3 To prevent incidents like Rofecoxib,
safety issues should be detected as early as possible in
development and not once the drug is marketed.4-7 To achieve
this state, it is highly desirable to create a better understanding
of chemical features linked to ADRs with the aim of removing
liable features during lead optimization.

In this work, we present a global analysis linking chemical
features to ADRs. Starting from data sets of marketed drugs
and their annotated ADRs, we extract chemical features that
are highly correlated to particular effects. Figure 1 illustrates
what one can learn from these analyses. Going a step further,
we then compute the overlap of ADR types in chemical space
to establish the degree of proximity (and, possibly, biological
relatedness) between different adverse reactions. Next, links
based on feature correlation information are used to generate a

global map of ADR relationships. Finally, we analyze how
different classes of undesired effects relate to each other on an
organ level.

Materials and Methods

The main source for our analyses is the PharmaPendium database
from Elsevier,8 which makes drug safety data of U.S.-approved
drugs available to researchers. Compound sets were extracted that
shared common ADRs or toxicities. In total we extracted 4210
different ADR terms stored in lower level Medical Dictionary for
Regulatory Activities (MedDRA) terminology. MedDRA is a
clinically validated international medical terminology used for ADR
reporting as a standard9 and throughout the entire regulatory process,
from premarketing to postmarketing activities, for data entry,
retrieval, evaluation, and presentation. MedDRA is used in the U.S.,
European Union, and Japan. Its use is currently mandated in Europe
and Japan for safety reporting. Preclinical, clinical, and postmar-
keting phase information were all used as input for our analysis.

For every MedDRA term, we extracted all associated molecules
from PharmaPendium. Despite the range of data set sizes between
10 and 1200 molecules associated with each MedDRA term (in
total the PharmaPendium database comprises of 1842 drugs), we
chose to include all of the compounds in the study to incorporate
as much knowledge into the following analyses as possible.

The well-established extended connectivity fingerprints (ECFPs)
with a radius of ECFP_4 were used as chemical descriptors for the
molecules because it has been shown in several cases that Bayesian
models built using circular fingerprints work very well in virtual
screening tasks.10-14 Multiple-category Laplacian-modified naive
Bayesian classification models were built for the ADRs using
components from Pipeline Pilot (Accelrys). These models assume
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Figure 1. A well-known example that shows how chemical substruc-
tures are linked to a certain adverse drug reaction, in this case cardiac
arrythmia caused by QT interval prolongation. We have performed this
analysis on a large scale (thousands of ADRs).
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that all variables are independent and use a Laplacian correction
to reduce the bias caused through descriptors less prevalent in the
data set. The derivation of the multiple-category Laplacian-modified
Bayesian models has been described previously.10-15 This com-
bination has a successful track record in large-scale data analysis
for various purposes. A general statistical evaluation can be found
in the publication by Nidhi et al.,14 and an in-depth evaluation of
ADR models can also be found in a previous paper.10

Next, for any pairing of ADR models, the similarity between
the two was established by computing the Pearson correlation
between the normalized feature probabilities from the individual
Bayesian models.10,16 Only the 10000 most frequent features, both
positively and negatively correlated, of each individual ADR model
which were also present in both model sets were used. This step
was found to improve the overlap of chemical substructures between
the ADRs. Correlations were normalized per ADR; that is, every
adverse reaction was assigned the same overall probability. In
contrast to the approach of comparing targets on the basis of their
overlap in small-molecule inhibitors, determining similarity via
statistically correlated features, allows one to determine ADR-ADR
similarity even when no exact chemical structures are in common
between data sets. In other words, only important substructures of
compounds need to be shared between two ADRs to find similarity.
(This is important because data from pooled sources do not contain
a complete experimental matrix of all drugs evaluated toward all
ADRs. A similar approach has proven very successful in computing
target-target similarities16). Recently, Campillos et al. have shown
that side effect similarity between compounds can be used to predict
novel targets.17 This is in line with what Hopkins has proposed in
understanding network pharmacology from the chemical point of
view.18

In a following step, all ADR-ADR pairings that show Pearson
correlation of F > 0.8 are retained as “significant” for the next
step of our analysis. Therefore 1501 ADR classes remain in the
analysis and were further investigated. All significant ADR pairs
were loaded into Cytoscape,19 a well-established open source
bioinformatics software platform for analyzing and visualizing

complex interaction networks. Within Cytoscape, a force-directed
mapping was applied to visualize relationships between ADRs.
Force-directed layout algorithms are a powerful and practical graph
drawing heuristic that relies on an objective function that maps a
particular graph layout to an energy value. Typically, such
algorithms start with a random drawing of the graph and utilize
standard optimization methods to minimize the energy function.
The algorithms define functions in which low energies are associ-
ated with layouts where adjacent vertices are near some preferred
distance from each other, and nonadjacent vertices are well-spaced.
To further analyze the generated network, we used the Cytoscape-
Plugin MCODE20 to identify highly connected regions in our
network. We applied the method using its standard parameters. The
full outcome of the analysis and detailed results are shown in the
Supporting Information (from page S306).

Results and Discussion

As a result, ADRs that show a high correlation are linked
and placed close to each other. The result of this analysis is
shown in Figure 2 and the raw data table is available in the
Supporting Information.

Similar analyses have recently been published for networks
of drugs and their targets.21-23 It can be seen that there are
many smaller clusters of ADRs, often located around one central
ADR. It is worth mentioning that if the required correlation
score between ADRs is lowered, more and more clusters become
connected to others and the interlinking and number of nodes
in the map becomes greater, making it increasingly difficult to
analyze. For example, a cutoff of F > 0.7 would yield a map
with 2095 nodes, which becomes ambiguous and therefore we
decided to use higher correlations for our analysis. Also, it is
important to emphasize that the pharmacological rationale of
two ADRs being linked via chemical structures diminishes
quickly when a lower cutoff is chosen. We are therefore

Figure 2. The global mapping of adverse drug reactions in chemical space in the Cytoscape visualization. Each dot represents exactly one ADR.
Two ADRs are connected if the chemical features they share have a Pearson correlation of 0.8 or higher; the higher the correlation, the closer the
ADRs are located. The coloring represents system organ classes (as defined in MedDRA). The 2D distance in this plot is also related to the
chemical similarity between those two points. The red circles mark the areas that are discussed in more detail, and they are also shown in a zoomed
version in Figure 3.
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convinced that a Pearson of 0.8 is appropriate to enable
applicable follow-up analyses.

In the next step, we analyzed which ADRs are linked due to
their underlying chemistry at the level of system organ class
(SOC), the highest level in the MedDRA terminology. Each
ADR node in the map was colored according to the SOC to
which it belongs. This immediately reveals clusters where all
the ADRs show the same color, suggesting the underlying
chemistry leads to ADRs only in the same organ. On the other
hand, there are heterogeneous clusters, indicating certain chemi-
cal features are linked to ADRs in different SOCs. Notably,
distribution of compounds in the body is also known to be linked
to chemical substructures.

Figure 3 shows an example for a homogeneous and a
heterogeneous type of cluster, taken from the circled regions
in Figure 2. On the left is a cluster of several skin side effects;
for every connection shown, we extracted the chemical features
with the highest Bayes score that are in common to the linked
ADRs. Substructure A, linking rash psoriasiform and oculo-
mucocutaneous syndrome, is common to many �-blockers
(Prenalterol, Alprenolol, Betaxolol, Atenolol, Bisoprolol, Levo-
betaxolol, Acebutolol, Esmolol, Metipranolol, Metoprolol),
which are used to treat hypertension, and, indeed, both of the
ADRs are documented for Practolol and Propanolol in Phar-
maPendium. This underlines the fact that common side effects
of drugs are often linked to common chemical frameworks. In
the topology of our map, the latter ADR is also linked to
dermatitis psoriasiform (Figure 3). In this case, another sub-
structure B is the one with the highest correlation. It is shared
by Propanolol and Duloxetine (a serotonin-norepinephrine
reuptake inhibitor). The two ADRs are reported co-occurring
for Practolol and Propanolol. Finally, dermatitis is linked to
Practolol syndrome through another highly scoring substructure
C in common to Pindolol and Propanolol, again, both terms
are co-occurring for Practolol. As this example demonstrates,
mapping ADRs of drugs through chemical space is possible,
and it links phenotypic and mechanistic spaces through the
common language of chemical structure. It is worth noting that
often low-level MedDRA terms are synonyms to each other.
In the example here, the ADR next to rash psoriasiform is rash

psoriaform. Therefore one can get additional confidence for links
between certain ADRs if synonyms are linked to the same target
ADR (such as here to oculomucocutaneous syndrome).

We performed the same type of analysis for the cluster of
nervous system and eye disorders shown in Figure 3 at the right.
Oppositional disorder of childhood (a nervous system disorder)
is linked to cyanopsia (an eye disorder) through substructure D
found in Vigabatrin (an anticonvulsant). Both ADRs are reported
to occur for this drug. Cyanopsia is further linked to oppositional
defiant disorder (again nervous system) through substructure E
found in several drugs, namely secretin, folic acid, calcitonin,
chenodiol, bivalirudin, and cosyntropin. This is then linked to
blue vision (again affecting the eye) through substructure F
found in Vigabatrin. Interestingly, in this case, very similar
ADRs from one system organ class (SOC) cluster together with
very similar ADRs from another SOC, but none of them is
linked to a member of the same SOC. Again, the results are
supported by co-occurrence of the ADRs in marketed drugs in
PharmaPendium.

In summary, both examples described here show that
computing a map of ADRs in chemical space can help to better
understand possible ADRs for novel compounds sharing similar
substructures.

We then analyzed the connectedness of the different clusters
in our network. The MCODE analysis provides us with a list
of clusters that are highly interlinked, i.e., they represent the
hubs within the network. The data of all these clusters is shown
in the Supporting Information. Having tightly linked clusters
where each member is linked to another one means basically
that similar chemical structures are statistically linked to different
adverse drug reactions, similar to Figure 3. The most interlinked
cluster is a subset of the big cluster shown in the lower left of
Figure 2. We will not describe these clusters in detail, as we
believe that the description of the general concept with detailed
examples along with providing the raw data will enable follow-
up studies. Rather, we are performing a more global-scale
analysis of our network.

To extend this analysis and to obtain a more global picture
of linked ADR classes, we performed a linkage analysis for
the map shown in Figure 2 by iteratively analyzing all data

Figure 3. Two specific examples for map elements; left, a homogeneous cluster of skin ADRs (marked in red), right, a cluster of eye (marked in
green) and psychiatric disorders (marked in violet). The chemical features shown over the connections are always the features that have the highest
score for the overlap between the two side effects.
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points assigned to a certain SOC. For example, one starts with
an ADR belonging to the group of cardiac disorders and
performs an analysis to find out how many other SOCs this
particular ADR is linked to. This is repeated for every ADR in
one SOC, and the according numbers are summed to obtain a
list of frequencies of cardiac disorder linkages (e.g., links in
chemical space to gastrointestinal disorders or eye disorders).
After calculating relative values, one obtains a proximity
measure of MedDRA SOC with the outcome visualized in
Figure 4. We can see that links to ADRs within the same SOC
are, as one would expect, somewhat over-represented for many
SOCs. Still, there are clear exceptions like blood and lymphatic
disorders or cardiac disorders where ADRs are not well-linked
within an SOC. This analysis gives us an idea what the most
likely other affected organ would be if one sees an ADR in a
particular organ. An example would be that psychiatric disorders
are very often linked to nervous system disorders or the
reproductive system is often linked to congenital disorderssa
finding that is also true for co-occurring ADR terms. We
postulate that this information could be used to find appropriate
biomarkers for certain more severe ADRs: if an ADR is linked
into another SOC, one could analyze the biological parameters
in the organ that has the closest connection in chemical ADR
space. A simple byproduct of the present work for drug
development is the application of the ADR chemical feature
models to compounds at any discovery stage to get an in silico
estimate of the likelihoods of the various adverse drug reactions
that may occur as well as the substructural features most
influencing the predicted ADRs.

Conclusions

In summary, we have developed a comprehensive data mining
and analysis approach for mapping chemical features to adverse
drug reactions on a large scale. We do not aim to understand
the mechanistic cause of the ADR (e.g., reactivity, binding to
targets, etc.) but the link between chemical structure and adverse
drug reaction directly. Thereby, we are able to obtain a global
picture of how different types of drug-induced adverse effects

may be connected and to map these results into a single plot
by exploiting network visualization tools. In addition, we
performed a global linkage analysis of the map of ADRs to
elucidate how adverse reactions cluster in the context of their
SOCs. The presented strategy is particularly suited to early
phases of drug discovery where we have previously shown10 it
can be used to annotate and potentially help weed out screening
candidates prior to experimental testing. On the other hand, it
might also be helpful to use desired side effects (such as an
antihypertensive actions) to engineer properties into a molecule
that benefit its primary mode of action or to provide ideas for
repurposing drugs, i.e., identifying novel uses for already
established drugs by following the same principles.

Supporting Information Available: Supporting Information
containing the basis data for the generated network and the identified
clusters. This material is available free of charge via the Internet
at http://pubs.acs.org.
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